NOTE: This errata contains a list of the notable corrections that have been made since the fourth printing of the PMBOK® Guide – Sixth Edition. In order to verify the print run of your book (or PDF), refer to the bottom of the copyright page. The last numeral in the string beginning with “10 9 8” etc., denotes the printing of that particular copy. Copies of the corrected pages are attached for convenience.

<table>
<thead>
<tr>
<th>Page</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>Figure 4-12. Added bullet under .2 Project documents for Change log.</td>
</tr>
<tr>
<td>114</td>
<td>Figure 4-13. (1) Added bullet under input .2 Project documents for Change log; (2) Added process box for 6.5 Develop Schedule with the input Change requests.</td>
</tr>
<tr>
<td>116</td>
<td>Section 4.6.1.2. Added following bullet under Project documents: ● Change log. Described in Section 4.6.3.3. The change log is used to record all submitted change requests.</td>
</tr>
<tr>
<td>190</td>
<td>Section 6.3.2.1. Revised first sentence of Start to finish (SF) bullet to read: A logical relationship in which a predecessor cannot finish until a successor activity has started.</td>
</tr>
<tr>
<td>426</td>
<td>Figure 11-10. Changed x-axis to read “high” on left side and “low” on right side.</td>
</tr>
<tr>
<td>438</td>
<td>Figure 11-17. Changed bullet under Project Documents from Resource breakdown structure to Project team assignments.</td>
</tr>
</tbody>
</table>
4.5.3.4 PROJECT DOCUMENTS UPDATES

Project documents that may be updated as a result of carrying out this process include but are not limited to:

- **Cost forecasts.** Described in Section 7.4.3.2. Changes in cost forecasts resulting from this process are recorded using cost management processes.

- **Issue log.** Described in Section 4.3.3.3. New issues raised as a result of this process are recorded in the issue log.

- **Lessons learned register.** Described in Section 4.4.3.1. The lessons learned register is updated with effective responses for variances and corrective and preventive actions.

- **Risk register.** Described in Section 11.2.3.1. New risks identified during this process are recorded in the risk register and managed using the risk management processes.

- **Schedule forecasts.** Described in Section 6.6.3.2. Changes in schedule forecasts resulting from this process are recorded using schedule management processes.

4.6 PERFORM INTEGRATED CHANGE CONTROL

Perform Integrated Change Control is the process of reviewing all change requests; approving changes and managing changes to deliverables, project documents, and the project management plan; and communicating the decisions. This process reviews all requests for changes to project documents, deliverables, or the project management plan and determines the resolution of the change requests. The key benefit of this process is that it allows for documented changes within the project to be considered in an integrated manner while addressing overall project risk, which often arises from changes made without consideration of the overall project objectives or plans. This process is performed throughout the project. The inputs, tools and techniques, and outputs of the process are depicted in Figure 4-12. Figure 4-13 depicts the data flow diagram for the process.
Figure 4-13. Perform Integrated Change Control: Data Flow Diagram
4.6.1 PERFORM INTEGRATED CHANGE CONTROL: INPUTS

4.6.1.1 PROJECT MANAGEMENT PLAN

Described in Section 4.2.3.1. Project management plan components include but are not limited to:

◆ **Change management plan.** Described in Section 4.2.3.1. The change management plan provides the direction for managing the change control process and documents the roles and responsibilities of the change control board (CCB).

◆ **Configuration management plan.** Described in Section 4.2.3.1. The configuration management plan describes the configurable items of the project and identifies the items that will be recorded and updated so that the product of the project remains consistent and operable.

◆ **Scope baseline.** Described in Section 5.4.3.1. The scope baseline provides the project and product definition.

◆ **Schedule baseline.** Described in Section 6.5.3.1. The schedule baseline is used to assess the impact of the changes in the project schedule.

◆ **Cost baseline.** Described in Section 7.3.3.1. The cost baseline is used to assess the impact of the changes to the project cost.

4.6.1.2 PROJECT DOCUMENTS

Project documents that can be considered as inputs for this process include but are not limited to:

◆ **Basis of estimates.** Described in Section 6.4.3.2. Basis of estimates indicate how the duration, cost, and resources estimates were derived and can be used to calculate the impact of the change in time, budget, and resources.

◆ **Change log.** Described in Section 6.4.3.3. The change log is used to record all submitted change requests.

◆ **Requirements traceability matrix.** Described in Section 5.2.3.2. The requirements traceability matrix helps assess the impact of the change on the project scope.

◆ **Risk report.** Described in Section 11.2.3.2. The risk report presents information on sources of overall and individual project risks involved by the change requested.

4.6.1.3 WORK PERFORMANCE REPORTS

Described in Section 4.5.3.1. Work performance reports of particular interest to the Perform Integrated Change Control process include resource availability, schedule and cost data, earned value reports, and burnup or burndown charts.
- **Finish-to-start (FS).** A logical relationship in which a successor activity cannot start until a predecessor activity has finished. For example, installing the operating system on a PC (successor) cannot start until the PC hardware is assembled (predecessor).

- **Finish-to-finish (FF).** A logical relationship in which a successor activity cannot finish until a predecessor activity has finished. For example, writing a document (predecessor) is required to finish before editing the document (successor) can finish.

- **Start-to-start (SS).** A logical relationship in which a successor activity cannot start until a predecessor activity has started. For example, level concrete (successor) cannot begin until pour foundation (predecessor) begins.

- **Start-to-finish (SF).** A logical relationship in which a predecessor activity cannot finish until a successor activity has started. For example, a new accounts payable system (successor) has to start before the old accounts payable system can be shut down (predecessor).

In PDM, FS is the most commonly used type of precedence relationship. The SF relationship is very rarely used, but is included to present a complete list of the PDM relationship types.

Two activities can have two logical relationships at the same time (for example, SS and FF). Multiple relationships between the same activities are not recommended, so a decision has to be made to select the relationship with the highest impact. Closed loops are also not recommended in logical relationships.
11.3.2.7 MEETINGS

To undertake qualitative risk analysis, the project team may conduct a specialized meeting (often called a risk workshop) dedicated to the discussion of identified individual project risks. The goals of this meeting include the review of previously identified risks, assessment of probability and impacts (and possibly other risk parameters), categorization, and prioritization. A risk owner, who will be responsible for planning an appropriate risk response and for reporting progress on managing the risk, will be allocated to each individual project risk as part of the Perform Qualitative Risk Analysis process. The meeting may start by reviewing and confirming the probability and impact scales to be used for the analysis. The meeting may also identify additional risks during the discussion, and these should be recorded for analysis. Use of a skilled facilitator will increase the effectiveness of the meeting.
Figure 11-17. Plan Risk Responses: Data Flow Diagram