Intel 4004

For Democratizing the Power of Computing (Most Influential Projects: #3 )

 
img

The first electronic computer filled an entire room. But something the size of a fingernail put all that power in people's hands: the Intel 4004. The predecessor to smaller, stronger, cheaper microchips, the 4004 showed it was possible to put all of a computer's processing onto a tiny slice of silicon. In doing so, it not only transformed existing devices, it helped create new ones.

Oh, and it was all kind of an accident.

As a small startup in 1969, Intel was looking to increase funding for its primary objective: making memory chips. So it accepted an offer from Japanese electronics maker Busicom to build several custom chips for the company's new line of calculators. Behind schedule and lacking resources, Intel's three-person team scrambled to deliver a family of four chips for the calculator, including the central processing unit chip that would become the 4004.

By the time it was completed in 1971, the chip could perform different functions on a range of devices beyond Busicom's calculator. It could be programmed to operate a pinball machine, for example. As Intel began to realize the possibilities of the technology, it made a deal with Busicom to secure the rights to develop the chip for other products and markets.

Intel co-founder Andrew Grove, PhD, and his team continued to iterate on chip technology, and in 1981 IBM chose Intel's 8088 chip to power its personal computer—the device that would eventually revolutionize the PC market. By 2011, Intel's share of the microchip market for PCs hit 80 percent. Today, microprocessors are ubiquitous, from mobile devices to home appliances, livestock ear tags to industrial equipment. Companies are cranking out chips so small and so sophisticated, some can even be implanted in people, transforming their hands into virtual wallets.

Micro Gone Macro

Microprocessors transformed modern electronic design, making devices smaller and smarter, and invading almost everything imaginable.

Smartphones

Home appliances

Electric toothbrushes

Elevators

Security systems

Automobiles

Air bags

Farm equipment

TVs

Credit card processors

Gas pumps

Airplane navigation
systems

10,000 nanometers

Circuit line width of the original Intel 4004 micro-processor

100,000 nanometers

Average width of a strand of human hair

10 nanometers

Circuit line width of today's smallest Intel microprocessors

Advertisement

Advertisement

Related Content

  • PMI Sponsored Research

    Digitalization as a Game Changer in Project Stakeholder Management member content open

    By Kier, Christof | Huemann, Martina This research work aims to discuss contemporary project stakeholder engagement and examines how digitalization shapes and affects the field.

  • Project Management Journal

    Using Principal–Steward Contracting and Scenario Planning to Manage Megaprojects member content locked

    By Turner, J. Rodney Megaprojects are complex, but people use constructs inappropriate in complex situations for their management, particularly contractual arrangements.

  • Project Management Journal

    A Dynamic Capabilities Model of Innovation in Large Interfirm Projects member content locked

    By Steen, John | Ford, Jerad A. | Verreynne, Martie-Louise The time-bounded nature of large interfirm projects and technical interdependencies constrain innovation.

  • PM Network

    El futuro del aprendizaje member content open

    By Fister Gale, Sarah Más de mil millones de niños en al menos 185 países se vieron afectados por el cierre de escuelas relacionado con la pandemia mundial el año pasado.

  • PM Network

    Fintech en la mira member content open

    By Fister Gale, Sarah Las tasas de adopción de tecnología financiera entre los consumidores casi se han duplicado cada dos años desde 2015, y el ritmo solo se aceleró durante la pandemia.

Advertisement